Renormalization as a Functor on Bialgebras
نویسندگان
چکیده
The Hopf algebra of renormalization in quantum field theory is described at a general level. The products of fields at a point are assumed to form a bialgebra B and renormalization endows T (T (B)+), the double tensor algebra of B, with the structure of a noncommutative bialgebra. When the bialgebra B is commutative, renormalization turns S(S(B)+), the double symmetric algebra of B, into a commutative bialgebra. The usual Hopf algebra of renormalization is recovered when the elements of S1(B) are not renormalized, i.e., when Feynman diagrams containing one single vertex are not renormalized. When B is the Hopf algebra of a commutative group, a homomorphism is established between the bialgebra S(S(B)+) and the Faà di Bruno bialgebra of composition of series. The relation with the Connes-Moscovici Hopf algebra is given. Finally, the bialgebra S(S(B)+) is shown to give the same results as the standard renormalization procedure for the scalar field.
منابع مشابه
Matrads, A∞-bialgebras and the Polytopes Kk
We introduce the notion of a matrad M = {Mn,m} whose submodules M∗,1 and M1,∗ are non-Σ operads. We construct a functor from PROP to matrads and its inverse, the universal enveloping functor. We define the free matrad H∞, generated by a singleton in each bidegree (m, n) 6= (1, 1), and define an A∞-bialgebra as an algebra over H∞. We realize H∞ as the cellular chains of polytopes {KKn,m = KKm,n}...
متن کاملMatrons, A∞-bialgebras and the Polytopes Kk
We introduce the notion of a matron M = {Mn,m} whose submodules M∗,1 and M1,∗ are non-Σ operads. We construct a functor from PROP to matrons and its inverse, the universal enveloping functor. We define the free matron H∞, generated by a singleton in each bidegree (m, n) 6= (1, 1), and define an A∞-bialgebra as an algebra over H∞. We realize H∞ as the cellular chains of polytopes {KKn,m = KKm,n}...
متن کاملHom-bialgebras and Comodule Algebras
We construct a Hom-bialgebra M(2) representing the functor of 2 × 2-matrices on Hom-associative algebras. We also construct a Hom-algebra analogue of the affine plane and show that it is a comodule Hom-algebra over M(2) in a suitable sense.
متن کامل1 F eb 2 00 6 MATRONS , A ∞ - BIALGEBRAS AND THE POLYTOPES KK
We introduce the notion of a matron M = {Mn,m} whose submodules M∗,1 and M1,∗ are non-Σ operads. We construct a functor from PROP to matrons and its inverse, the universal enveloping functor. We define the free matron H∞, generated by a singleton in each bidegree (m, n) 6= (1, 1), and define an A∞-bialgebra as an algebra over H∞. We realize H∞ as the cellular chains of polytopes {KKn,m = KKm,n}...
متن کاملA Hopf Algebra Deformation Approach to Renormalization
We investigate the relation between Connes-Kreimer Hopf algebra approach to renomalization and deformation quantization. Both approaches rely on factorization, the correspondence being established at the level of Wiener-Hopf algebras, and double Lie algebras/Lie bialgebras, via r-matrices. It is suggested that the QFTs obtained via deformation quantization and renormalization correspond to each...
متن کامل